

5-Day Cement Industry Training Course In

RAW MIX DESIGN AND RAW MATERIAL SPECIFICATIONS

Dubai - UAE, 21 – 25 Dec. 2026

COURSE LEVEL: INTERMEDIATE

COURSE OVERVIEW:

Raw mix design and the establishment of raw material specifications are the foundational steps in ensuring a stable and efficient cement production process. This course defines the technical requirements for incoming minerals and the subsequent mathematical blending required to meet kiln feed targets. It provides a comprehensive bridge between quarry exploration and the chemical precision required in the cement kiln.

The scope of this training involves the setting of strict chemical and physical boundaries for limestone, clay, and corrective additives to ensure process repeatability. It covers the evaluation of "Loss on Ignition" (LOI), moisture content, and particle size distribution as key performance indicators for raw materials. Furthermore, the course addresses the logistical and chemical challenges of integrating alternative raw materials while maintaining the structural integrity of the final clinker.

Coverage includes detailed modules on the calculation of mix moduli, the impact of mineralogical impurities, and the development of procurement specifications for additives. Participants will explore the role of pre-homogenization and the use of chemical analyzers in maintaining a consistent raw meal profile. Through the study of stoichiometry and material balance, attendees will gain the skills necessary to optimize the raw mix for both clinker quality and operational cost reduction.

COURSE OBJECTIVES:

After completion of this course, the participants will be able to:

- Define the chemical and physical specifications for all cement raw materials.
- Calculate the LSF, SR, and AR moduli for a standard raw mix.
- Understand the impact of moisture and LOI on material handling and cost.
- Identify the mineralogical impurities that affect kiln burnability.
- Develop "Acceptance/Rejection" criteria for incoming corrective materials.
- Balance a three-component raw mix using algebraic methods.
- Assess the impact of raw material fineness on chemical reactivity.
- Manage the "Sulfur-to-Alkali" ratio through mix adjustment.
- Evaluate the suitability of industrial by-products as raw material substitutes.
- Utilize "On-line Analyzers" to maintain raw meal consistency.
- Understand the relationship between raw mix design and clinker mineralogy.
- Implement a robust sampling and testing protocol for incoming materials.

TARGET AUDIENCE:

This course is intended for Laboratory Chemists, Quarry Supervisors, Procurement Officers, and Process Engineers.

TRAINING COURSE METHODOLOGY:

A highly interactive combination of lectures, discussion sessions, and case studies will be employed to maximize the transfer of information, knowledge, and experience. The course will be intensive, practical, and highly interactive. The sessions will start by raising the most relevant questions and motivating everybody to find the right answers. The attendants will also be encouraged to raise more of their questions and to share in developing the right answers using their analysis and experience. There will also be some indoor experiential activities to enhance the learning experience. Course material will be provided in PowerPoint, with necessary animations, learning videos, and general discussions.

The course participants shall be evaluated before, during, and at the end of the course.

COURSE CERTIFICATE:

National Consultant Centre for Training LLC (NCC) will issue an Attendance Certificate to all participants completing a minimum of 80% of the total attendance time requirement.

COURSE OUTLINE / COURSE CONTENT:**MODULE 1: THE HIERARCHY OF RAW MATERIALS**

- Primary components: Calcareous and Argillaceous materials.
- Secondary components: Iron and Silica correctives.
- Understanding the role of minor components (Alkali, Sulfur, Chlorine).
- Evaluating "Alternative Raw Materials" (ARM) as cost-savers.
- Environmental and safety considerations in material sourcing.

MODULE 2: ESTABLISHING MATERIAL SPECIFICATIONS

- Setting chemical limits for CaO, SiO₂, Al₂O₃, and Fe₂O₃.
- Defining the physical limits: Moisture, Hardness, and Granulometry.
- Impact of "Loss on Ignition" (LOI) on material balance.
- Understanding the "Soderberg Index" and material grindability.
- Developing a "Standard Specification Sheet" for suppliers.

MODULE 3: SAMPLING AND QUALITY ASSURANCE

- Principles of representative sampling in the quarry and plant.
- Techniques for sample preparation: Drying, crushing, and pulverizing.
- Role of XRF analysis in verifying raw material compliance.
- Managing the "Certificate of Analysis" (COA) from suppliers.
- Handling "Non-Conforming" material deliveries.

MODULE 4: MATHEMATICS OF RAW MIX DESIGN

- Understanding the Lime Saturation Factor (LSF).
- The role of Silica Ratio (SR) and Alumina Ratio (AR).
- Solving two and three-component mix problems algebraically.
- Impact of "Target Variations" on kiln stability.
- Introduction to "Burnability Factor" calculations.

MODULE 5: THE VOLATILE CYCLE AND MIX CHEMISTRY

- Behavior of Chlorides and Sulfates in the preheater tower.
- Managing the "Alkali-Sulfur Balance" to prevent blockages.
- The impact of Magnesia (MgO) on clinker quality and safety.
- Adjusting the raw mix to minimize "Volatile Recirculation."
- Role of the "Total Equivalent Alkali" in customer specs.

MODULE 6: LIQUID PHASE AND NODULIZATION

- Predicting the percentage of liquid phase in the burning zone.
- How Fe₂O₃ and Al₂O₃ act as fluxing agents.
- Impact of the liquid phase on "Coating Formation" in the kiln.
- Viscosity of the liquid phase and its role in Alite formation.
- Optimizing the liquid phase for clinker size and shape.

MODULE 7: RAW MEAL HOMOGENIZATION SYSTEMS

- Function of the pre-blending yard: Stacker and Reclaimer.
- Design and operation of the raw meal blending silo.
- Continuous vs. Batch homogenization methods.
- Measuring "Blending Efficiency" and its impact on quality.
- Troubleshooting "Short-circuiting" in homogenization silos.

MODULE 8: ON-LINE ANALYZERS AND REAL-TIME CONTROL

- Principles of Prompt Gamma Neutron Activation Analysis (PGNAA).
- Integrating on-line analyzers with the raw mill control loop.
- Calibration and maintenance of nuclear-based analyzers.
- Impact of belt speed and material depth on analyzer accuracy.
- Managing "Cross-Belt" sampling systems.

MODULE 9: CLINKER MINERALOGY PREDICTION

- Introduction to Bogue's Equations for phase calculation.
- Limitations of Bogue and the role of XRD.
- Impact of "Free Lime" on the raw mix feedback loop.
- How raw mix design dictates 28-day cement strength.
- Predicting clinker "Grindability" from chemical composition.

MODULE 10: CASE STUDIES AND MIX OPTIMIZATION

- Troubleshooting a "High Sulfur" raw material crisis.
- Optimizing a raw mix for "Sulfate Resistant Cement" (SRC).

- Reducing production costs through ARM utilization.
- Final group exercise: Developing a new mix design for a quarry change.
- Course wrap-up and final technical assessment.